A Framework for Enabling Privacy Preserving Analysis of Graph Properties in Distributed Graphs
نویسندگان
چکیده
In the real world, many phenomena can be naturally modeled as a graph whose nodes represent entities and whose edges represent interactions or relationships between the entities. Past and ongoing research on graphs has developed concepts and theories that may deepen the understanding of the graph data and facilitate solving many problems of practical interest represented by graphs. However, little of this work takes privacy concerns into account. This paper contributes to privacy preserving graph analysis research by proposing a framework for enabling privacy preserving analysis of graph properties in distributed graphs. The framework is composed of three modules. We discuss the functionality of each module and describe how the modules together ensure the privacy protection while retaining graph properties and answer users’ queries pertaining to graph properties.
منابع مشابه
A centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملAn Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملPreserving Differential Privacy in Degree-Correlation based Graph Generation
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enfo...
متن کاملA Comprehensive Theoretical Framework for Privacy Preserving Distributed OLAP
This paper complements the privacy preserving distributed OLAP framework proposed by us in a previous work by introducing four major theoretical properties that extend models and algorithms presented in the previous work, where the experimental validation of the framework has also been reported. Particularly, our framework makes use of the CUR matrix decomposition technique as the elementary co...
متن کاملPrivacy-Preserving Data Analysis on Graphs and Social Networks
While literature within the field of privacy-preserving data mining (PPDM) has been around for many years, attention has mostly been given to the perturbation and anonymization of tabular data; understanding the role of privacy over graphs and networks is still very much in its infancy. In this chapter, we survey a very recent body of research on privacy-preserving data analysis over graphs and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017